Thermal Interface Materials

Have an application where silicone is not allowed?

New! Our Non-Silicone Thermal Putty

The heat generated by individual power devices, integrated circuits, and within complete electronic systems has increased radically in the last decade. The need for thermal management systems is essential to preserve electronic systems operating within their specification. Peak performance and reliability depend on proper temperature limits sustained by thermal management systems.

When surfaces are attached with an interface, there is most commonly an area of mechanical contact at the interface sight. This is due to the surface roughness or waviness and will have an impact on the heat conduction. The surface irregularity and the resulting gap is the primary cause of thermal contact resistance as the gaps fill with low thermal conductivity air. To minimize the resistance, filler materials are generally required to increase the contact between the mating surfaces.

Thermal Interface Materials

Image Source: MyHeatSinks

The importance of minimizing contact resistance requires the use of thermal interface materials (TIMs). TIMs go into the joint to fill the air gaps between solid surfaces during assembly. Typically, several interfaces exist between the heat generating element and the eventual heatsink. The thickness can vary from a few thousandths of an inch to several hundredths of an inch.

Some of these consist of permanent bonds like solder or adhesives. Other interfaces are non-permanent and will form part of the heat transfer path, such as a component being bolted to a heatsink or between an assembled module and a chassis.

The ideal TIMs have high thermal conductivity, are easily deformed by small contact pressure, have no leakage from the interface, no deterioration over time, are non-toxic and are easy to apply or remove.

KraFAB’s thermally conductive materials are used to reduce air gaps from electronic devices by conforming uneven rough mating surfaces. As electronic devices get smaller, conductive materials need to respond and work efficiently to ensure the devices are working at maximum capacity. KraFAB has a wide variety of materials that is well suited for your design.

Many electronic devices use fans and heat sinks to keep the temperatures cool, but thermal interface materials play a critical role in assisting with the displacement of heat.

KraFAB offers a wide variety of fabricated films, wet dispensed thermal materials and pad thermal interface materials to fit your application needs. Wet dispensed materials such as gel, adhesives and non-curing compounds can be used in practically any device configuration and do an excellent job in accommodating high tolerance between surfaces.

Some of the thermal interface materials used to transfer heat from electronic devices includes:

  • Thermal tapes
  • Phase change materials
  • Gap pads
  • Thermal greases
  • Dielectric pads
  • Heat spreaders
  • Thermal compounds
  • Thermal Gel
Thermal Interface Materials

KraFAB provides thermal interface materials for nearly any project or unique need.

Types of TIMs

The importance of minimizing contact resistance requires the use of thermal interface materials (TIMs). TIMs go into the joint to fill the air gaps between solid surfaces during assembly. Typically, several interfaces exist between the heat generating element and the eventual heatsink. The thickness can vary from a few thousandths of an inch to several hundredths of an inch.

Some of these consist of permanent bonds like solder or adhesives. Other interfaces are non-permanent and will form part of the heat transfer path, such as a component being bolted to a heatsink or between an assembled module and a chassis.

KRA-Fab offers a variety of options through Parker Chromerics thermal interface materials, each one designed to meet specific manufacturing needs. 

These TIM formats are:

Gap Filler Pads

One of the most commonly used Thermal Interface Material, or TIM, formats are gap fillers.  Gap fillers came on the scene several decades ago as a logical follow on to dielectric pads. These materials are designed to be soft, thermally conductive, and electrically isolating to fill a variety of interface areas (or “gaps”) and aid in heat removal.

Thermal interface materials come in a variety of conductivity, softness, and price points. They sometimes come with PSA on one side to aid in manufacturing, but many have a natural tack that makes PSA unnecessary. These materials only need to fill the gaps (or “wet the joint”) to do their job, which means large compression forces are not required.

Gap fillers are generally quite soft, but they are not compressible and instead deflect under load. So, if the jointed areas are out of flat or parallel, significant force may be required to get the entire jointed area wetted.

Most commonly, gap filler pads are made from filled silicone elastomer. Like all elastomers, gap fillers will take compression set. This may necessitate replacement if the system is disassembled and re-assembled.

Some of our most popular gap filler materials are the Chomerics THERM-A-GAP HCS10G, 569, 579 and 976 families of gap fillers. They are available in a wide variety of formats including multiple carrier options, with or without PSA, and thicknesses, etc.  Each of these families have unique advantages in terms of thermal conductivity, softness, and price point. Link to Therm-A-Gap PDF above

THERM-A-GAP HCS10G provides an ultra low hardness solution (4 Shore 00) 1.0 W/m-K.

THERM-A-GAP 569 is a very low hardness solution (10 Shore 00) with a 1.5 W/m-K thermal conductivity.

THERM-A-GAP 579 is a low hardness solution (30 Shore 00) at 3.0 W/m-K with the lowest outgassing.

Download THERM-A-GAP Information Sheet

Gap Filler Gels

One of the newest TIMs, thermally conductive gap filler gels are very similar to their gap filler pad predecessors. The difference, however, is that these filled silicone materials are only lightly cross linked and so they are not form stable. Instead of pads, these fillers come in dispensing containers.  Gap filler gels allow for very large compression ranges with minimal compression force. This results in an extremely well-wetted joint with little stress on the jointed surfaces. Gap filler gel TMIs offer the conformability of curable compounds  but with a much better shelf life.

The original thermal gel is the very popular Chomerics THERM-A-GAP GEL T630.

There are also several other Chomerics follow on gel products, including T630G, T635, and T636 with varying thermal conductivity levels and price points.

The THERM-A-GAP GEL30 is a readily available single-component, fully cured, dispensable gel with 3.5 W/m-k Thermal Conductivity. The low thermal impedance allows for use of common heat spreaders.

THERM-A-GAP GEL8010 is also a single-component, fully cured, dispensable gel with 3.0 W/m-k that allows for a thin bondline.

The THERM-A-GAP GEL30 and GEL8010 have been successful in many automotive Electronic Control Units (ECU’s), Power supplies, Semiconductors and beyond. 

Download THERM-A-GAP GEL8010 and GEL30 PDF Info Sheet

Di-electric Pads

Di-electric pads were the original TIM gap filler pad.  This type of thermal interface material has proliferated in almost industry every where electronics are used. Because of their high demand, they are offered in a wide range of thermal conductivity and dielectric abilities. These materials have good to very good thermal conductivity, but they do require large joining forces to achieve their rated thermal impedance numbers. Most thermally conductive dielectric pads are available with PSA on one side to allow for easier manufacturing.

Dielectric pads are only available in the 5 – 15 mil thick range, and, due to their relatively hard nature, they are used in either small size joints or very robust larger joints.

The CHO-THERM 500 is a tried and true excellent solution for applications where the highest possible thermal, dielectric, and mechanical properties are required.

The CHO-THERM 1671 is ideal for aerospace and defense applications due to its high reliability and 2.6W/m-k.

Curable Compounds

These materials allow for easy fill of almost any jointed area down to gaps as small as 5 mil. They are used in applications where a typical gap pad might be used but where no compression forces are available. They are also used in underfill, overfill, and potting applications.

Some curable compounds offer moderate adhesion properties as well. Curable compound TIMs also have the a side benefit of shock and vibration damping.

These materials do require some practice in order to effect a neat and effective interface. Probably the biggest drawback with curable thermal compounds is the shelf life and storage conditions requirements

Chomerics THERM-A-FORM T647 and CIP 35 are popular choices in this family of products.

THERM-A-FORM T647 is a two component silicone elastomer with high thermal conductivity (3.0 W/m-k). Due to its low modulus characteristic, it is well suited for elaborate shapes and forms on a PCB and other applications.

THERM-FORM CIP35 is a versatile two component 3.5 W/m-k thermal compound with a 55 Shore A hardness. Due to its low modulus characteristic, it is well suited for elaborate shapes and forms on a PCB and other applications.
Therm-a-form CIP35 link

PSA tapes

THERMATTACH double-sided tapes allow for a moderate thermal solution while freeing the designer from allocating space and money for mechanical attachment of the jointed surfaces. They have the additional benefit of being an easy to use and low cost thermal and attachment solution.

When PSA tapes are used, attention must be paid to jointed surface cleanliness and flatness. Chomerics T418, T412 and T404 are the most popular tapes in our line up. They respectively focus on adhesion, thermal conductivity and electrical isolation.


Thermally conductive grease are a good choice for their very low thermal impedance. Lower end thermal greases can be a low cost thermal interface solution. The highest performing greases can be quite expensive.

Due to their low viscosity nature, greases are very good for filling very thin interface areas.  Greases  are not suitable for gaps larger than about 5 mils.

Another possible issue with greases is their inherent messiness. A common disadvantage with thermal grease is pump-out as a result of jointed surface CTE and thermal cycling. This can be unsightly or even harmful in some applications. Also, some greases are subject to drying, which reduces their ability to maintain the thermal solution over time. Greases such as Chomerics T670 address this latter problem with a formulation that will not dry out throughout the entire system life cycle.

Phase change materials

The phase change TIM format was introduced a few decades ago as a potential improvement to thermal greases. These materials come in pad form and melt at typical electronics operating temperatures. This allows for a good thin joint fill similar to the grease format, but without the potential mess and waste.

Some potential draw backs of phase change TIMs are fact that they don’t achieve their full thermal potential until they soften and flow. Because of this, the joint fasteners either need to be tightened during the first thermal cycle or they need to provide dynamic loading.

Chomerics provides the excellent solution of the THERMFLOW line and T777 is a very popular phase change choice and offers the same performance levels as a high end grease. T766 and T558 phase change materials add an additional benefit of a clean separation when the joint is dis-assembled via a very thing conformable foil layer on one side of the phase change pad.

We can meet the demands of your electronic designs

TIM Considerations

While the use of thermal interface materials helps to improve heat transfer across an interface, TIMs also account for most of the total system thermal resistance. When choosing a thermal interface material, many characteristics must be considered:

Thermal conductivity

A thermal interface material’s conductivity determines how much heat it can transfer across the interface. This has a major impact on its thermal performance.

Thermal resistance

The sum of resistance at the interface is due to the thermal conductivity and the contact resistance of the two surfaces.

Electrical conductivity

Some TIMs are electrically conductive but they are generally polymers or polymers filled with non-conductive materials.

Ease of Application and Installation

The ease of application of a thermal interface material is based on the material and the controlled amount applied.

Phase Change Temperature

This is the temperature at which the interface material transitions softens in order to fill the gaps and to expel all air. It is important that the phase change temperature is below the maximum operating temperature so that heat can be transferred across the interface. The temperature also needs to be as high the device can tolerate, however, to avoid a phase change during shipping.


The release of volatile gasses when materials are exposed to elevated temperatures and/or low atmospheric pressures is outgassing. Outgassing is a particular concern in aerospace applications due to reduced pressures and can also cause issues within sealed cavity packages.

Surface Finish

The efficiency of a TIM to fill large gaps in irregular surfaces is an important factor in material choice. The interaction of filler particles with the adjoining surfaces influences the level of compaction at the interfaces.


A significant difference in the thermal interface material used is based on mounting pressure. Minimizing contact resistance requires considering TIM performance and the ability to conform to surfaces.

Mechanical Properties

TIMs in paste or liquid needs to be dispensed or printed. A higher filler volume fraction increases thermal conductivity but also makes it more difficult to dispense due to the increased viscosity.

Long Term Stability & Reliability

TIMs need to perform consistently throughout the lifespan of the device. Electronic devices are designed to last seven to ten years, while avionics and telecommunication devices can survive decades.

Due to the combination of a decrease in the size of electronics and an increase of power densities, thermal control in electronics have become a major concern. In order for electronics to properly operate, thermal management is becoming more critical and fundamental. Maintaining temperatures within their proper limits ensures optimum performance and reliability.

Thermal management systems need to not only use all modes of heat transference but also to spread the heat out from the point of generation and into extended surface areas. This requires a knowledge of traditional thermal interface materials so that the best material can be chosen for each application.

Have questions about our thermal interface materials?